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Abstract
This paper categorizes several exploration meth-
ods for reinforcement learning according to their
underlying heuristics. Using Q-learning with lin-
ear function approximation, we compare represen-
tative methods from each category on a set of do-
mains designed to pose different exploratory chal-
lenges. We find that the relative performance of
each method depends on the specific exploratory
challenge posed by the domain. Our results sug-
gest that each exploration heuristic encodes a bias
which is appropriate for a subset of environments.

1. Introduction
Effective exploration strategies are critical for obtaining the
data needed to learn optimal and near-optimal policies. Ex-
ploration has been well-studied in the literature, particularly
for approaches that use state-transition models in the value-
function update (see Szita & Lőrincz, 2008), called planning.
Much of the work has been theoretical, and despite the large
body of literature most control papers use simple strategies
like ε-greedy. While the planning-free setting has histor-
ically been studied less, difficulties around planning with
function approximation have motivated the development of
several new planning-free approaches. In this work we aim
to clarify key ideas surrounding exploration with planning-
free, value-based methods.

Planning-free exploration methods have largely been inves-
tigated in isolation, often compared only to simple baselines
like ε-greedy. This separation has made it difficult to gauge
the relative performance of different strategies or identify
shared concepts underlying the algorithms. Some previous
work has categorized methods based on whether they direct
exploration or explore randomly (Thrun, 1992) or based
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on subcategories of optimism in the face of uncertainty
(OFU), including separating count-based and confidence-
based methods (Kumaraswamy et al., 2018). Other studies
compare small numbers of methods (Tijsma et al., 2016;
White & White, 2010). Kumaraswamy et al. (2018) com-
pare a larger set of algorithms, different from the ones we
study in this work, but to showcase their newly proposed
algorithm rather than to understand the underlying strategies
of the compared methods.

The goal of this work is to begin a systematic conceptual
categorization of exploration methods that is supported by
empirical results in different types of domains. We select
domains to highlight particular properties that make explo-
ration difficult, for example difficult transition or reward
structures. While this categorization will necessarily be
incomplete for both methods and domains, our goal is to
provide a foundation for future studies on exploration.

We first propose a categorization of exploration techniques
based on their underlying concepts. We then describe a
novel suite of environments that have been designed to
isolate specific aspects of exploration, including the effects
of misleading rewards, large state spaces, and dynamics that
make it difficult to reach large rewards. We also provide
experiments comparing representative exploration methods
from each category. Each agent uses an exploration method
in conjunction with Q-learning (Watkins, 1989) with linear
function approximation. The agents learn for a fixed number
of steps and are evaluated offline to determine the quality
of their learned policies. Though we restrict attention to
linear function approximation in this first study, we compare
methods designed for neural networks such as DQN (Mnih
et al., 2015), and focus investigation on methods that scale
to larger problems.

Our empirical results largely support our proposed cate-
gorization: methods in the same category tend to fail or
succeed similarly depending on the properties of the envi-
ronment. We also find that no single exploration method
performs better than the others across all environments, sug-
gesting that novel algorithms should be tested on suites of
environments that provide interpretable, multifaceted views
into the algorithms’ behaviour.



An Empirical and Conceptual Categorization of Value-based Exploration Methods

Figure 1. Categorization of value-based reinforcement learning control methods. Bullet points indicate methods that fall into each category.

1.1. Overview of exploration methods

Value-based exploration methods fall into two main cate-
gories that are distinguished by the way they treat uncer-
tainty. Methods in the first category are Optimistic in the
Face of Uncertainty (OFU): these methods behave accord-
ing to a plausible estimate of the most rewarding MDP
given the observed data. Methods in the second category are
Randomized; they sample from distributions over optimal
actions, value functions, or MDPs that are plausible given
the observed data.

When using linear function approximation, a simple but
widely-used strategy is to initialize each of the weights to
some optimistic value. Then, on average, the estimated
value of the visited state-action pair decreases at each time-
step, and the agent chooses another action when it visits
similar states. Optimistic initialization is an example of an
OFU method whose uncertainty decays based on the agent’s
value-learning process.

Uncertainty can also decay based on novelty, or the num-
ber of visits to a state or state-action pair. In the tabular
setting, Meuleau & Bourgine (1999) proposed a model-free
method called IEQL+, based on the Interval Estimation al-
gorithm for bandits (Kaelbling, 1993). IEQL+ backs up
uncertainty estimates through the value function by adding
a confidence-interval inspired novelty bonus to the reward.
Bellemare et al. (2016) describe a similar algorithm for
non-linear function approximation, which combines DQN
with these count-based reward bonuses. Since identifying
states is generally impossible when using function approx-
imation, they created a visitation density model over the
raw state space to approximate state visitations. Several
other methods also use count-based reward bonuses and
DQN; Martin et al. (2017) propose a density model over
linear features rather than the raw state, while others from
Tang et al. (2017) or Abel et al. (2016) respectively hash
or cluster states before counting them. Fox, Choshen, and
Loewenstein (2018) count state visitation using a function

similar to the value function. These methods are all based
on giving the agent a reward bonus proportional to some
measure of novelty.

While count-based exploration methods use a reward bonus
based on novelty, Stadie, Levine, and Abbeel (2015) and
Pathak et al. (2017) propose reward bonuses based on sur-
prise, using next-state prediction error. These methods learn
a model to predict the next state, and encourage exploration
for states with high prediction error. In using prediction
error as a reward bonus, these models implicitly assume
that the accuracy of the value function and state-prediction
function are closely related.

The second category contains randomized methods, which
randomize either action selection and or the value function.
One of the most popular action-selection methods, ε-greedy
action selection (Watkins, 1989), selects the action with
the highest estimated value, called the greedy action, with
probability 1−ε, and a random action with probability ε. No-
tably, DQN — which is the base algorithm for most recent
count-based reward bonus methods — includes ε-greedy
action selection. Like ε-greedy, softmax (Luce, 1959) also
selects actions according to a distribution. The probability
of selecting an action is the output of a softmax over the
action-value estimates. While both these action-selection
techniques are simple, they are among the oldest and most
popular ways to explore.

Instead of randomizing action selection, some methods ran-
domize their value functions and act greedily according
to a sampled value function. One such method, Bayesian
dropout (Gal & Ghahramani, 2016), represents a distribution
over value functions using a single neural network by ran-
domly excluding nodes from the value calculation. Another
method, Bootstrap DQN (Osband et al., 2016), represents a
distribution using many separate value functions. Each value
function is updated to a different extent every time-step ac-
cording to a sampled bootstrap parameter. Bootstrap DQN
explores consistently during an episode by acting according
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to the same value function for the entire episode. Finally,
Fortunato et al. (2018) propose noisy networks, which learn
a random value function parameterized by mean and scaled
standard normal noise terms.

1.2. Experimental setup

Our experiments are designed around components of an
environment that affect an agent’s performance. Since a
reinforcement learning environment is primarily defined
by the reward and transition dynamics, each of our envi-
ronments makes one or both of the components difficult.
Complete descriptions of the environments are available in
the Appendices. The difficulty can come from stochastic
rewards or transitions, as in VarianceWorld or continuous
RiverSwim respectively, or from locally misleading reward
signals, as in Antishaping. The environment can also be
difficult simply because the state-action space is large, as
in the five-dimensional Hypercube. The latter two environ-
ments are inspired by the RL Acid (Langford, 2018) set
of difficult problems for reinforcement learning. Continu-
ous RiverSwim is an adaptation of Strehl & Littman’s 2008
Riverswim. We advocate the use of our environments as
benchmarks; they pose significant challenges for current
control methods, while remaining interpretable in their sim-
plicity.

We implement agents from each of the conceptual cate-
gories using Q-learning. Optimistic initialization represents
the class of OFU methods with learning-based uncertainty
decay. Our novelty-based uncertainty agents use reward
bonuses that decay with the square root of state-counts or
state-action counts. We also include a linear version of
IEQL+, which combines optimistic initialization and state-
action count based reward bonuses. Including IEQL+ allows
us to observe the joint effect of optimistic initialization and
count-based reward bonuses.

We also include a method with a reward bonus that is based
on the error of a linear next-state prediction function. The
function independently predicts each dimension of the raw
state using the same tile-coded features and linear architec-
ture as the value function. This setup allows the next-state
learning process to mirror the value function’s learning pro-
cess.

To represent the randomized methods, we first include ε-
greedy and softmax action selection as simple extensions
of Q-learning. We use bootstrap Q-learning and a linear
version of a noisy network to represent methods with ran-
domized value functions. Our bootstrap Q-learning learns
10 value functions in parallel, whose updates are weighted
by independent samples from a Poi(1) distribution. Our
noisy network is identical to Q-learning, except that the
agent learns parameters for both the value and noise terms.

Finally, we include two agents that are not strictly part of
the comparison, but that will provide intuition about the
behaviour of other agents: a random agent for a baseline,
and an actor-critic agent with a softmax policy, to be roughly
representative of policy gradient methods.

Each agent’s features are represented by tile-coding (Sutton
& Barto, 1998) with two tiles per input dimension and 32
tilings, according to the generally useful trick of using few
tiles and many tilings. Agents are trained for 500k time-
steps according to their exploration strategies, after which
their target policies are evaluated without learning for 100k
time-steps. We report the total reward accumulated by each
agent during the evaluation phase. Further experimental
details can be found in the Supplementary Material. Code
can be found here.

2. Results
In general, our results support the conceptual categories
we describe in Section 1.1. The randomized value function
methods performed almost identically in each of the environ-
ments, even though their value function representations and
sampling frequencies are very different. Both methods were
able to learn a good policy in the Antishaping experiment,
but performed at least as badly as the random agent in the
other environments. In Hypercube, the distributional value
function agents found policies that only touch one wall,
which is worse than randomly picking actions. In Osband
et al. (2018), BootstrapDQN performed well on an envi-
ronment that is similar to RiverSwim called DeepSea. We
suspect that the use of experience replay (see Van Seijen &
Sutton, 2015) may contribute to the improved performance
observed in that work.

By contrast, the action-sampling methods behaved quite
diversely. In Antishaping and RiverSwim, the small magni-
tude of the misleading reward signals meant that the softmax
action probabilities remained close to uniform random un-
til the larger rewards were found, effectively countering
the misleading reward. The policy followed by ε-greedy
was greatly affected by the small misleading reward signals.
However, in Hypercube the ε-greedy agent’s greedy action
tended to push the agent into an edge that it was already
touching, concentrating exploration in valuable states.

The OFU methods are not as cleanly delineated into con-
ceptual categories as the sampling methods. Surprise and
novelty-based uncertainty decay methods performed quite
similarly, with results that are consistent with promoting
exploration of the entire state or state-action space. In gen-
eral, surprise-based uncertainty methods do not promote
sweeping the entire state-space. However, the next-state
prediction error in our experiments may have decayed at a
similar rate to the state space visitation, producing similar
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Figure 2. The distributions of total reward collected by each agent over 360 runs of the 100k time-step evaluation phase. Agents are
colored based on their category, with the first two methods, random actions and Actor Critic, being baselines. More density over larger
reward values (farther right) indicates improved performance. Vertical lines correspond to the reward obtained by different policies: in
Antishaping, the policies of staying in the center or of moving to the nearest environment boundary; in Hypercube, policies that touch
increasing numbers of edges; in VarianceWorld and RiverSwim, the policies that go to the smaller or larger reward.

patterns of behaviour.

Policies found by optimistic initialization behaved quite
differently from those found by the other OFU methods.
Even IEQL+, which uses optimistic initialization in con-
junction with reward bonuses based on state-action counts,
found policies that were indistinguishable from the other
novelty-based methods. Optimistic initialization did not
perform well in Antishaping and VarianceWorld because
the optimistic values decayed too quickly for the agent to
learn from the challenging reward functions. In the other
two environments, optimistic initialization was able to find
very strong policies.

3. Take-home messages
A broadly successful exploration heuristic has not yet
been identified. Every agent we tested performed at or
below the level of random action selection on at least two
of the four domains.

Optimistic initialization and ε-greedy are the most
promising options for practical problems with large
state-action spaces. In Hypercube, the rest of the agents
performed similarly to or worse than random action selec-
tion.

The ideal exploration heuristic depends on properties
of the environment. Applied researchers can tailor prac-
tical exploration strategies to the properties of their target
environments.
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